non-abelian, soluble, monomial
Aliases: C25.1S3, C24.6D6, C23.17S4, C24⋊2Dic3, (C22×A4)⋊2C4, (C2×A4).11D4, A4⋊2(C22⋊C4), C22⋊2(A4⋊C4), (C23×A4).2C2, C22.21(C2×S4), C2.3(A4⋊D4), C22⋊(C6.D4), C23.5(C2×Dic3), C23.21(C3⋊D4), (C22×A4).7C22, (C2×A4⋊C4)⋊2C2, C2.11(C2×A4⋊C4), (C2×A4).9(C2×C4), SmallGroup(192,991)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C25.S3
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=e2=f3=1, g2=b, ab=ba, gag-1=ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, fef-1=de=ed, fdf-1=gdg-1=e, geg-1=d, gfg-1=f-1 >
Subgroups: 714 in 173 conjugacy classes, 27 normal (13 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C6, C2×C4, C23, C23, C23, Dic3, A4, C2×C6, C22⋊C4, C22×C4, C24, C24, C24, C2×Dic3, C2×A4, C2×A4, C2×A4, C22×C6, C2×C22⋊C4, C25, C6.D4, A4⋊C4, C22×A4, C22×A4, C22×A4, C24⋊3C4, C2×A4⋊C4, C23×A4, C25.S3
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Dic3, D6, C22⋊C4, C2×Dic3, C3⋊D4, S4, C6.D4, A4⋊C4, C2×S4, C2×A4⋊C4, A4⋊D4, C25.S3
Character table of C25.S3
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 6A | 6B | 6C | 6D | 6E | 6F | 6G | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 6 | 6 | 8 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | i | i | -i | -i | -i | -i | i | i | -1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 4 |
ρ6 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -i | -i | i | i | i | i | -i | -i | -1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 4 |
ρ7 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | i | -i | i | i | -i | -i | i | -i | 1 | 1 | -1 | 1 | -1 | -1 | -1 | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -i | i | -i | -i | i | i | -i | i | 1 | 1 | -1 | 1 | -1 | -1 | -1 | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 2 | 2 | 2 | -2 | -2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | orthogonal lifted from D6 |
ρ10 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | -2 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ12 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 2 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | -2 | 2 | 2 | 2 | -2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | symplectic lifted from Dic3, Schur index 2 |
ρ14 | 2 | 2 | -2 | -2 | 2 | -2 | -2 | -2 | 2 | 2 | -2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | symplectic lifted from Dic3, Schur index 2 |
ρ15 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-3 | -√-3 | -1 | 1 | -√-3 | √-3 | 1 | complex lifted from C3⋊D4 |
ρ16 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-3 | √-3 | -1 | 1 | √-3 | -√-3 | 1 | complex lifted from C3⋊D4 |
ρ17 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-3 | -√-3 | 1 | 1 | √-3 | -√-3 | -1 | complex lifted from C3⋊D4 |
ρ18 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-3 | √-3 | 1 | 1 | -√-3 | √-3 | -1 | complex lifted from C3⋊D4 |
ρ19 | 3 | 3 | 3 | 3 | 3 | 3 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ20 | 3 | 3 | 3 | 3 | -3 | -3 | -1 | -1 | -1 | -1 | 1 | 1 | 0 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×S4 |
ρ21 | 3 | 3 | 3 | 3 | 3 | 3 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ22 | 3 | 3 | 3 | 3 | -3 | -3 | -1 | -1 | -1 | -1 | 1 | 1 | 0 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×S4 |
ρ23 | 3 | 3 | -3 | -3 | 3 | -3 | 1 | 1 | -1 | -1 | 1 | -1 | 0 | i | i | i | -i | i | -i | -i | -i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from A4⋊C4 |
ρ24 | 3 | 3 | -3 | -3 | 3 | -3 | 1 | 1 | -1 | -1 | 1 | -1 | 0 | -i | -i | -i | i | -i | i | i | i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from A4⋊C4 |
ρ25 | 3 | 3 | -3 | -3 | -3 | 3 | 1 | 1 | -1 | -1 | -1 | 1 | 0 | -i | i | i | -i | -i | i | i | -i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from A4⋊C4 |
ρ26 | 3 | 3 | -3 | -3 | -3 | 3 | 1 | 1 | -1 | -1 | -1 | 1 | 0 | i | -i | -i | i | i | -i | -i | i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from A4⋊C4 |
ρ27 | 6 | -6 | -6 | 6 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4⋊D4 |
ρ28 | 6 | -6 | 6 | -6 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4⋊D4 |
(2 12)(4 10)(5 16)(7 14)(18 22)(20 24)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)
(1 11)(2 12)(3 9)(4 10)(5 16)(6 13)(7 14)(8 15)(17 21)(18 22)(19 23)(20 24)
(1 11)(2 4)(3 9)(5 16)(6 15)(7 14)(8 13)(10 12)(17 19)(18 24)(20 22)(21 23)
(1 3)(2 12)(4 10)(5 14)(6 13)(7 16)(8 15)(9 11)(17 23)(18 20)(19 21)(22 24)
(1 19 6)(2 7 20)(3 17 8)(4 5 18)(9 21 15)(10 16 22)(11 23 13)(12 14 24)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
G:=sub<Sym(24)| (2,12)(4,10)(5,16)(7,14)(18,22)(20,24), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24), (1,11)(2,12)(3,9)(4,10)(5,16)(6,13)(7,14)(8,15)(17,21)(18,22)(19,23)(20,24), (1,11)(2,4)(3,9)(5,16)(6,15)(7,14)(8,13)(10,12)(17,19)(18,24)(20,22)(21,23), (1,3)(2,12)(4,10)(5,14)(6,13)(7,16)(8,15)(9,11)(17,23)(18,20)(19,21)(22,24), (1,19,6)(2,7,20)(3,17,8)(4,5,18)(9,21,15)(10,16,22)(11,23,13)(12,14,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)>;
G:=Group( (2,12)(4,10)(5,16)(7,14)(18,22)(20,24), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24), (1,11)(2,12)(3,9)(4,10)(5,16)(6,13)(7,14)(8,15)(17,21)(18,22)(19,23)(20,24), (1,11)(2,4)(3,9)(5,16)(6,15)(7,14)(8,13)(10,12)(17,19)(18,24)(20,22)(21,23), (1,3)(2,12)(4,10)(5,14)(6,13)(7,16)(8,15)(9,11)(17,23)(18,20)(19,21)(22,24), (1,19,6)(2,7,20)(3,17,8)(4,5,18)(9,21,15)(10,16,22)(11,23,13)(12,14,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24) );
G=PermutationGroup([[(2,12),(4,10),(5,16),(7,14),(18,22),(20,24)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24)], [(1,11),(2,12),(3,9),(4,10),(5,16),(6,13),(7,14),(8,15),(17,21),(18,22),(19,23),(20,24)], [(1,11),(2,4),(3,9),(5,16),(6,15),(7,14),(8,13),(10,12),(17,19),(18,24),(20,22),(21,23)], [(1,3),(2,12),(4,10),(5,14),(6,13),(7,16),(8,15),(9,11),(17,23),(18,20),(19,21),(22,24)], [(1,19,6),(2,7,20),(3,17,8),(4,5,18),(9,21,15),(10,16,22),(11,23,13),(12,14,24)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)]])
G:=TransitiveGroup(24,402);
(1 3)(2 15)(4 13)(5 12)(6 8)(7 10)(9 11)(14 16)(17 24)(18 20)(19 22)(21 23)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)
(1 16)(2 13)(3 14)(4 15)(5 10)(6 11)(7 12)(8 9)(17 22)(18 23)(19 24)(20 21)
(2 13)(4 15)(5 10)(6 11)(7 12)(8 9)(18 23)(20 21)
(1 16)(3 14)(5 10)(6 11)(7 12)(8 9)(17 22)(19 24)
(1 9 23)(2 24 10)(3 11 21)(4 22 12)(5 13 19)(6 20 14)(7 15 17)(8 18 16)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
G:=sub<Sym(24)| (1,3)(2,15)(4,13)(5,12)(6,8)(7,10)(9,11)(14,16)(17,24)(18,20)(19,22)(21,23), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24), (1,16)(2,13)(3,14)(4,15)(5,10)(6,11)(7,12)(8,9)(17,22)(18,23)(19,24)(20,21), (2,13)(4,15)(5,10)(6,11)(7,12)(8,9)(18,23)(20,21), (1,16)(3,14)(5,10)(6,11)(7,12)(8,9)(17,22)(19,24), (1,9,23)(2,24,10)(3,11,21)(4,22,12)(5,13,19)(6,20,14)(7,15,17)(8,18,16), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)>;
G:=Group( (1,3)(2,15)(4,13)(5,12)(6,8)(7,10)(9,11)(14,16)(17,24)(18,20)(19,22)(21,23), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24), (1,16)(2,13)(3,14)(4,15)(5,10)(6,11)(7,12)(8,9)(17,22)(18,23)(19,24)(20,21), (2,13)(4,15)(5,10)(6,11)(7,12)(8,9)(18,23)(20,21), (1,16)(3,14)(5,10)(6,11)(7,12)(8,9)(17,22)(19,24), (1,9,23)(2,24,10)(3,11,21)(4,22,12)(5,13,19)(6,20,14)(7,15,17)(8,18,16), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24) );
G=PermutationGroup([[(1,3),(2,15),(4,13),(5,12),(6,8),(7,10),(9,11),(14,16),(17,24),(18,20),(19,22),(21,23)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24)], [(1,16),(2,13),(3,14),(4,15),(5,10),(6,11),(7,12),(8,9),(17,22),(18,23),(19,24),(20,21)], [(2,13),(4,15),(5,10),(6,11),(7,12),(8,9),(18,23),(20,21)], [(1,16),(3,14),(5,10),(6,11),(7,12),(8,9),(17,22),(19,24)], [(1,9,23),(2,24,10),(3,11,21),(4,22,12),(5,13,19),(6,20,14),(7,15,17),(8,18,16)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)]])
G:=TransitiveGroup(24,403);
(1 23)(2 4)(3 21)(5 17)(6 8)(7 19)(9 16)(10 12)(11 14)(13 15)(18 20)(22 24)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)
(1 21)(2 22)(3 23)(4 24)(5 19)(6 20)(7 17)(8 18)(9 14)(10 15)(11 16)(12 13)
(2 24)(4 22)(5 17)(7 19)(9 16)(10 13)(11 14)(12 15)
(1 23)(3 21)(6 18)(8 20)(9 16)(10 13)(11 14)(12 15)
(1 11 19)(2 20 12)(3 9 17)(4 18 10)(5 21 16)(6 13 22)(7 23 14)(8 15 24)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
G:=sub<Sym(24)| (1,23)(2,4)(3,21)(5,17)(6,8)(7,19)(9,16)(10,12)(11,14)(13,15)(18,20)(22,24), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24), (1,21)(2,22)(3,23)(4,24)(5,19)(6,20)(7,17)(8,18)(9,14)(10,15)(11,16)(12,13), (2,24)(4,22)(5,17)(7,19)(9,16)(10,13)(11,14)(12,15), (1,23)(3,21)(6,18)(8,20)(9,16)(10,13)(11,14)(12,15), (1,11,19)(2,20,12)(3,9,17)(4,18,10)(5,21,16)(6,13,22)(7,23,14)(8,15,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)>;
G:=Group( (1,23)(2,4)(3,21)(5,17)(6,8)(7,19)(9,16)(10,12)(11,14)(13,15)(18,20)(22,24), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24), (1,21)(2,22)(3,23)(4,24)(5,19)(6,20)(7,17)(8,18)(9,14)(10,15)(11,16)(12,13), (2,24)(4,22)(5,17)(7,19)(9,16)(10,13)(11,14)(12,15), (1,23)(3,21)(6,18)(8,20)(9,16)(10,13)(11,14)(12,15), (1,11,19)(2,20,12)(3,9,17)(4,18,10)(5,21,16)(6,13,22)(7,23,14)(8,15,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24) );
G=PermutationGroup([[(1,23),(2,4),(3,21),(5,17),(6,8),(7,19),(9,16),(10,12),(11,14),(13,15),(18,20),(22,24)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24)], [(1,21),(2,22),(3,23),(4,24),(5,19),(6,20),(7,17),(8,18),(9,14),(10,15),(11,16),(12,13)], [(2,24),(4,22),(5,17),(7,19),(9,16),(10,13),(11,14),(12,15)], [(1,23),(3,21),(6,18),(8,20),(9,16),(10,13),(11,14),(12,15)], [(1,11,19),(2,20,12),(3,9,17),(4,18,10),(5,21,16),(6,13,22),(7,23,14),(8,15,24)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)]])
G:=TransitiveGroup(24,404);
Matrix representation of C25.S3 ►in GL7(𝔽13)
12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 |
12 | 12 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 5 | 0 | 0 | 0 | 0 | 0 |
5 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 8 | 0 | 0 | 0 |
0 | 0 | 0 | 8 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
G:=sub<GL(7,GF(13))| [12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12],[12,1,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,12,0,0,0,0,0,0,0,12,0],[0,5,0,0,0,0,0,5,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,8,8,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0] >;
C25.S3 in GAP, Magma, Sage, TeX
C_2^5.S_3
% in TeX
G:=Group("C2^5.S3");
// GroupNames label
G:=SmallGroup(192,991);
// by ID
G=gap.SmallGroup(192,991);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-2,2,28,141,1124,4037,285,2358,475]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=e^2=f^3=1,g^2=b,a*b=b*a,g*a*g^-1=a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,f*e*f^-1=d*e=e*d,f*d*f^-1=g*d*g^-1=e,g*e*g^-1=d,g*f*g^-1=f^-1>;
// generators/relations
Export